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I. INTRODUCTION 

The last decade has witnessed a dramatic increase in the research 

activities dealing with the possibility of utilizing space for various 

commercial and scientific needs. In several recent issues of Astronautics 

and Aeronautics (see, for example, [l-4]), many articles have appeared 

which deal with diverse aspects of large space structures. These articles 

have identified various applications and also proposed novel designs of 

structures to meet such applications. A review of the research activities 

on space structures prior to 1966 has been documented in volume [5] that 

resulted from an International Conference on space structures. 

It has thus become necessary to find and analyze small lightweight 

modular structures that will be used easily to construct much larger space 

structures. Truss-type periodic (repetitive) structures have recently 

been analyzed as candidates for space structures [5-81. Here simplicity 

in construction coupled with large stiffness to density ratios will be 

most desirable. However, up to now, most of the extensive modeling and 

design of latticed space structures have been concerned with flat structures 

in the form of either plates or three-dimensional Cartesian structures [6-81. 

Latticed structures in the form of spherical domes have previously 

been modeled and analyzed as candidates for many terrestrial structural 

applications. These are known as geodesic domes and constitute vari- 

ations on the original spherical dome invented by Buckminster Fuller [9,10]. 

The flat lattice models studied so far in [6-81 are restricted in their 

possible applications to such structures as science platforms or phased 

array radars. However, the results reported in [6-81, although presented 

an initial stage in the understanding of the behavior of large space struct- 

ures, gave insight and confidence into the possible extension to the study 



of more geometrically complicated structures. Shallow shell structures 

have frequently been mentioned, for example, as candidates for building 

components in communication systems, orbiting antenna reflectors and solar 

energy satellites. 

In this report we describe methods of designing the geometry of latticed 

shells of revolution. These will consist of single surface shells in the 

form of either spherical or paraboloidal shells. Although our analysis will 

be kept general we do this with an important application in mind; namely the 

design and geometric analysis of large space antenna reflectors. 

The authors would like to thank M. Anderson, H. Bush, M. Card, and 

M. Mikulas of NASA Langley for many helpful discussions throughout the 

development of this work. 



II. LITERATURE REVIEW OF SPHERICAL GEODESIC DOMES 

General Description: 

The transition from a flat latticed surface to its corresponding curved 

surface introduces significant geometric difficulties. Consider for example, 

the case of a (0 , + 60°) flat plate arrangement shown in figure 1. Here 

all members have the same length. Now, in trying to deform figure 

1 to fit on a spherical surface for example, one finds it impossible to do so, 

especially if he insists on maintaining thelengthsof the members to stay the 

same. In so trying one soon realizes that he does not have enough mathematical 

tools to construct such a discrete spherical shell. The geometric constraints 

encountered in constructing latticed shells can only be understood and utilized 

if one familiarizes himself with the appropriate mathematical tools such as 

geodesics. Here geodesics is defined as the technique for constructing shell- 

like structures that hold themselves up without supporting columns. They could 

be very light and very strong. They can also be very large and hence attractive 

for space as well as earth structures. The geodesic spherical bubble erected 

to house the United States exhibits at EXPO '67 in Montreal is an example which 

exhibits all of the above attractive properties. Smaller geodesic domes have 

also been used as cabins, offices, playgrounds, and pavilions, etc, Yet, 

considering their apparent potential, in the quarter-century since Buchninster 

Fuller introduced them they have not been used very widely. This is perhaps due 

to the fact that they are mathematically derived structures and their mathematics 

has not been easily available. Parts for the self-supporting frame must be 

fabricated to close specification. The fabrication, with today's technology, 

is no problem, the problem is learning what the specifications should be. 



FIG. 1. (O", + 60°) ARRAY - 



In developing the geodesic dome, Fuller recognized that the equilateral 

triangle was the most basic geometric structure which is also inherently very 

stable and strong. By translating, rotating and piecing these triangles to- 

gether one can form regular polyhedra. One specific polyhedron, the icosahedron, 

was found to best approximate the sphere of all other polyhedronal forms. 

To see how this works, consider the twenty identical equilateral triangles 

of figure 2a. By cutting along the outer sides of this figure, wrapping it 

around and connecting the edges one gets the icosahedron of figure 2b. This 

icosahedron will have twenty identical triangular faces, twelve vertices and 

thirty equal length edges. Moreover, there exists a unique sphere which 

circumscribes this icosahedron and passes through its twelve vertices. If one 

imagines blowing up the icosahedron to completely fill the sphere one recognizes 

that the twelve vertices maintain their original positions but the triangular 

sides become spherical and lie on the sphere. From the above discussions we 

can conclude that the icosahedron constitutes a rather rough approximation of 

a sphere. Better approximations can be obtained, however, by subdividing the 

individual icosahedron triangles into smaller ones and blowing them up to 

locate their vertices on the sphere. These subdivisions are known as the 

frequencies of the structure. The higher the frequency, the closer one gets 

to the sphere. Upon further subdivisions, one soon realizes, however, that the 

geometry becomes involved (as will be shown later, for example, the number of 

different lengths is roughly in the order of the square of the frequency). 

Various methods of subdividing the icosa triangles have been reported in the 

literature (see, for examples [9,10]). 

Simple geometric consideration will reveal that the side length L of the 

icosahedron is equal to 1.051462R where R is the radius of the sphere circum- 

scribing it. For further discussion of the spherical geodesic dome descriptions 
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FIG. 2a. ICOSA TRIANGLES 

FIG. 2b. ICOSAHEDRON 
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we refer the reader to [g, 101. In what follows however, we shall treat 

the geodesic spherical dome as a very special case of our intended general 

modeling of lattice spherical and paraboloidal caps. 

Having identified large space shallow antennas reflectors as an important 

application of our lattice shells we here point out the insufficiency and 

the inflexibility of the Fuller type geodesic spherical dome to meet their 

general geometric requirement. For example, the number of members emanating 

from the various vertices of the subdivision triangles (once on the sphere) 

will not be uniform. Specifically from each of the original twelve icosahedron 

vertices there emanate five members where as from all the remaining sub- 

division vertices there emanate six members. This nonuniformity will influence 

the degree of smoothness required. Thirdly, in constructing the Fuller sphere 

only the center of the sphere is used as the projection center of the sub- 

divisions. Fourthly, further development and analysis will be required to 

construct a Fuller type paraboloidal shell. The above unattractive properties 

of the Fuller shell will be more obvious later on in our modeling analysis 

once we introduce the many nonrestrictive geometric degrees of freedom. 



III. ANTENNAS REFLECTORS IN THE FORM OF LATTICED SHELLS OF REVOLUTION 

In order to use latticed structures as good candidates for building large 

space antennas we must first understand the global geometric description of the 

required structure. Specifically we must know if the antenna reflector will be 

a part of a sphere, paraboloid, ellipsoid or any other form of shells of revol- 

ution. Once this is specified, two extra parameters* such as the height, H and 

the aperture radius, R 1' of the shell cup will be enough to completely specify 

the required geometry. 

A typical shallow shell of revolution cap is shown in figure 3a. By chang- 

ing the ratio of H to R 1 various degrees of shallowness will be realized. As for 

the geometric approximation of the cap we proceed as follows: We subdivide the 

circumference of the aperture circle into n identical segments where n is an 

arbitrary integer. The points connecting these segments are numbered 2 - (n+l) 

and are then connected with the vertix point 1 (as shown for example in figure 3b 

for n = 8) to form an n identical-sided pyramid. In terms of H and Rl, the side 

lengths of the individual triangular face of the pyramid are given by 

L1 = (R; + H2) 
112 

(1) 

L2 = 2Rl sin: (2) 

This pyramid will then form the roughest discrete approximation of the cap. 

Better approximations can be obtained, however, by subdividing the individual 

original pyramid triangular faces into smaller triangles and mapping them to 

locate their vertices on the desired surface (see Figures 4-6 for procedure 

illustration). These subdivisions, denoted N, are 

* If FL and focus to aperture diameter ratio (FOD) are the given two parameters 

then H can be calculated as H = 4 X FOD X FL [ l -(l - 16(;oD)2)1'2] for a 

sphere and H = Rl/(16 FOD) for a paraboloid. 
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FIG. 3a. REPRESENTATIVE DISH 
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FIG. 3b. PYRAMID APPROXIMATION (n=8) 



PYRAMID 

PYRAMID 
SUBDIVISION 

FINAL SPHERICAL 
SHAPE 

FIG. 4. PROCEDURE ILLUSTRATION OF SUBDIVISION AND 
M,APPING (n=6, N=7, FOD = 0.25) 
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PYRAMID 

PYRAMID 
SUBDIVISION 

FINAL PARABOLOIDAL 
SHAPE 

FIG. 5. PROCEDURE ILLUSTRATION OF SUBDIVISION AND MAPPING 
(n=6, N=7, FOD = 0.25) 
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PYRAMID 

FINAL PARABOLOIDAL SHAPE 

FIG. 6. PROCEDURE ILLUSTRATION OF SUBDIVISION AND MAPPING 
(n=8, N=7, FOD = 0.25) 
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known as the frequencies of the structure. The higher the frequency is, the 

closer one gets to the required surface. Upon further subdivisions one soon 

realizes, however, that the geometric description becomes complex; such 

complexity will be discussed later on in the analysis. 

III. 1 Pyramid Face Breakdown _--___.--- 

As we mentioned earlier the pyramid represents a rather rough approxi- 

mation of the required surface and that better approximations can be obtained 

by subdividing the individual face triangles into smaller ones and mapping them 

so that their vertices will lie on the circumscribing surface. 

There are many types of breakdown for the original face triangle. We here 

mention two of them. The first is called the "alternate breakdown" in which one 

draws lines parallel to the sides of the triangle. The second breakdown is 

known as the "triacon" and it is obtained by drawing lines perpendicular to the 

triangle's sides. Both breakdowns are illustrated in figure 7 for frequency 2. 

A 
ALTERNATE 

/ 
/ 

/ 

/ \ 
/ 

/ 
/ 

---. 

\ \ \ \ 
P \ \ 
\ \ _--- 

TRIACON 

FIG. 7. TRIANGULAR BREAKDOWN (N=2) 
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There are many differences between these two kinds of breakdowns; the most 

obvious two are: in the alternate breakdown the original triangle edges re- 

main part of the structure where, as in the triacon they do not and the second 

is that the alternate breakdown is possible in all frequencies whereas only 

even frequencies are possible in the case of the triacon breakdown. 

In the remainder of this report we shall concentrate on describing the 

alternate breakdown; the triacon breakdown will be discussed in a later report. 

Before we further discuss the form of subdivisions we shall first adopt the 

following appropriate coordinate system. 

The n-sided pyramid is oriented in the three dimensional rectangular co- 

ordinate system as shown in figure 8. The origin of this system is chosen to 

be the center of the sphere that circumscribes the pyramid, namely the sphere 

that passes through the points l-n. In terms of H and Rl, the radius R of 

this unique sphere is given by 

R = (R; + H2)/2H . (3) 

Accordingly, we choose the Z axis to pass through the vertex 1 with the X-Y 

coordinates being parallel to the aperture circle. Due to the symmetry of the 

pyramid faces we shall only treat a single one, namely the triangle 1,2,3 of 

figure 8. The projection of this triangle (1,2,3) on the horizontal plane 

circle is given by 1,2,3 and is shown together with the X-Y coordinate system 

in figure 9. With this choice of coordinate system the coordinates of the 

points 1,2,3 are given by 

14 
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FIG. 8. APPROPRIATE COORDINATE SYSTEM 
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FIG. 9. PROJECTION OF TRIANGLE 1,2,3 of FIG. 8 
ON THE HORIZONTAL PLANE 
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(Xl,Y1,Z1> = (O,O,R) 

(X2,Y2,Z2) = (5 cos(z), - RI sin(z), R-H) 

(X3 ,Y3,Z3> = CR1 c-(:1, 5 sin(z), R-H) (4) 

Accordingly, by subdividing the triangle 1,2,3 into frequency N as shown 

below in figure 10 we can determine the coordinates of the subtriangle vertices 

' IJ' 'IJ' 'IJ by the alternate subdivision rule (this rule has also been employed 

by Clinton [9] and others). 

X IJ 
(X2-X1> + J (X3-X2) 

=x1+1 N N ' 

Y (y2-y1) + J (Y3-Y2) 
IJ =Y1+1 N N ' 

Z (z2-zl) + J (Z3-z2> 
IJ =z1+1 N N ' 

where I and J are integers such that 

(5) 

(6) O<J<I<N - - - 
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FIG.10. BREAKDOWN NUMBERING 
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III. 2 Proiections on Spherical and Paraboloidal Surfaces ._ ~~-.__~- 

In what follows we shall concentrate our efforts on developing discrete 

surfaces of spherical and paraboloidal cap surfaces. Simple geometric con- 

sideration will reveal that the equation of the sphere that passes through 

the vertices l-n of the pyramid is given by 

X2 + Y2 + Z2 = R2 (7) 

As for the paraboloid that passes through the points l-n, the appropriate 

equation is 

2 

x2 + Y2 R1 = H (R-Z) (8) 

(see sketch of figure 11 as an illustration of the paraboloid surface). A 

schematic comparison of both the spherical and paraboloidal surfaces is shown 

in figure 12. 

III.3 Projection Centers 

If the projection of the point (XIJ, YIJ, ZIJ> on the required surface 

is designated as (XT,, YFJ, ZsJ), then the location of the points on the surface 

will depend upon their origin of projection. In what follows we shall leave 

the Z coordinate of such a center arbitrary, namely Z P' 
The points (XT,, Ys,, Zs,) can be obtained by connecting the points 

(0, 0, Zp> and (XIJ, YIJ, ZIJ) by a straight line and extending it to 

intersect the required solid surface. Accordingly, the equation of this 

straight line is 

XSJ s zs -z 'IJ IJ P 
Xs for a sphere 

--c-c -= 
'IJ 'IJ 'IJ-'P Xp for a paraboloid (9) 
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FIG. 11. EXAMPLE OF THE PARABOLOIDAL SURFACE THAT 
CIRCUMSCRIBES THE PYRAMID 
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SPHERICAL 
PARABOLOIDAL 

SURFAL +.. 4suRFAcE 

/ 

4 

’ R/ \\ 
0 / 

FIG. 12. COMPARISON OF PARABOLOIDAL AND SPHERICAL SURFACES 
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Once the specific surface (sphere or paraboloid) is specified equation (9) 

S S 
can be solved for XIJ, YIJ, ZS IJ individually in terms of the remaining 

quantities. Accordingly, we obtain 

S 

'IJ =hX 
S 

p IJ' 'IJ = XPYIJ, Z"IJ = Ap(zIJ-zp> + zp (10) 

for a paraboloidal surface. Similar expressions for YyJ and ZsJ can be as 

easily obtained. Finally, substituting the resulting XT,, YsJ and ZsJ into 

the appropriate equation of required solid (equation (7) for the sphere and 

(8) for the paraboloid) one obtains the following equations for Xs and A , P 

respectively. 

+ xs 2XFXIJ + 2YPYIJ + 2zp(ZIJ-Zp) 
I 1 

+ z2 I I P 
- R2 = 0 

';[X:J + ':J] 

Each of equations (11) and (12) admits two solution. Recognizing that 

the cap is totally located above the location Z=O we choose that X which gives 

ZFJ > 0. 

22 



III. 4 Geometric Description of Frequency N Caps 

We are now in a stage where we can qualitatively describe the geometric 

make-up of a cap of any frequency N. Here every triangular face of the pyramid 

has the number of subdivision,- faces sf given by (see, for example figure 13 

with N=6 for illustration) 
N-l 

sf = 1 (2m+l) = N2 (13) 
m=O 

Hence the total number of faces in the whole cap, Sf, is 

2 
sf = nN (14) 

Now since from (13) each of the N2 subtriangles has three sides and since 

each side is shared by two neighboring triangles, one has the total number, 

e , of columns to build an isolated single pyramid triangle 

R = F (N+l) (15) 

Accordingly, the total number, L, of elements required for the total cap is 

L = F (1+3N) (16) 

Hence, an effective number of elements per each of the original pyramid tri- 

angles will be L/n. Finally, the total number, v, of vertices in the whole 

cap is 

v = l+$(N+l)] I 

III. 5 Chord Factors 

(17) 

Having derived expressions for the total number of members required to 

build the cap we now indicate that not all of these members are either equal 

or different in lengths. Knowing the minimum number, m, of different lengths 

(also known as the chord factors)is of most importance. Accordingly we now 

proceed to develop formulas forsuch a number. Generally speaking, once on 

23 



FIG. 13. NUMBER OF TRIANGULAR SUBDIVISIONS OF 
A PYRAMID FACE (~=6, sf = 36) 
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the required surface the distances between nei.ghboring vertices will not 

retain their original lengths. This is because of the "stretching" required 

to project them on the surface. In fact, these lengths will be dependent 

upon their original locations on the pyramid face triangle. Various symmetry 

relations will lead to deriving exact relations for the number of chord factors, 

m, required to build a given antenna. These relations are functions of the 

frequency N as follows: 

(a) For a paraboloidal or spherical surface with projection center (O,O,Zp) 

where Z p is an arbitrary variable m is given by 

m=3N2 
4 +N+$, (N odd, see Fig. 14 for example) (18) 

m=?N2+N 4 , , (N even, see Fig. 15 for example) . (19) 

(b) For spherical surfaces with center of projection Z P = 0 certain additional 

members have equal lengths so that m is given by 

(i) n # 5 or n = 5 with Ll # L2 

m=2N2 
4 + ; + ;- , (N odd, see Fig. 16 for example) 

m+‘+;, (N even, see Fig. 17 for example) 

(ii) n = 5 with L 1 = L2 (Fuller's case) 

(20) 

(21) 

m = -$ [(N+1)2 - 11 , (N even and not multiple of 3, see Fig. 18) (22) 

2 m=i(N+l) , (N odd and not multiple of 3, see Fig. 19) (23) 

N N m=T(T+l), (N multiple of 3, see Fig. 20) (24) 

25 



FIG. 14. NUMBER OF CHORD FACTORS AS PREDICTED 
BY EQUATION (18) 
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FIG. 15. NUMBER OF CHORD FACTORS AS PREDICTED 
BY EQUATION (19) 
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FIG. 16. NUMBER OF CHORD FACTORS AS PREDICTED 
BY EQUATION (20) 
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FIG. 17. NUMBER OF CHORD FACTORS AS PREDICTED 
BY EQUATION (21) 
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FIG. 18. NUMBER OF CHORD FACTORS AS PREDICTED BY EQUATION (22) 
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FIG. 19. NUMBER OF CHORD FACTORS AS PREDICTED BY EQUATION (23) 
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FIG. 20. NUMBER OF CHORD FACTORS AS PREDICTED BY EQUATION (24) 
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III. 6 Normal Projections from the Intersections of 0, + 60' Array 

An interesting special case of our modeling subdivision and mapping can 

be obtained by choosing the vertex 1' whose coordinates are (O,O,R-H) rather 

than the vertex 1 whose coordinates are (O,O,R) for our reference "pyramid". 

If subsequently we project, for any frequency N, from the center (O,O,Zp) 

with Z 
P 

-f m we obtain the results for the case where normal projections are 

carried out from each of the intersections of 0, + 600 flat array to meet the 

surface of the solid (see figure 21 for complete procedure illustration). 

The same results for this special case can also be obtained as follows: 

by setting Xl = 0, Y1 = 0 and Z1 = R-H in equation (4) we adapt it to the 0, 

2 60' flat array subdivision of the aperture circle. For every point (XIJ, 

YIJ,ZIJ) we raise a normal to the flat array which meets the required surface 

at the point (Xs IJ,YFJ,ZFJ) which is uniquely determined once the surface is 

specified as follows: For the sphere one has 

R2-(X;J+Y;J) 
> 

and for the paraboloid one has 

OS rJJ;,, z;,) = XIJJIJ, R - % 

FL 

(XtJ+Y$ 
'> 

(25a) 

(2%) 

Once the points on the surface are specified the calculations follow exactly 

the steps of the alternate breakdown outlined above. 

As will be shown numerically later on both the results of the exact procedure 

of equations (25a) and (25b) will be indistinguishable, as far as member lengths 

and smoothness are concerned from the limiting case of the alternate breakdown 

with the projection center (O,O,Zp) with Z + ~0. It will also be shown that the 
P 

number of chord factors will dramatically decrease for the "normal projection" 
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FIG. 21. PROCEDURE ILLUSTRATION OF SUBDIVISION AND 
NORMAL PROJECTION MAPPING (n=6, N=7, FOD = 0.25) 
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modeling especially for the case of the paraboloid surface. 

III, 7 Measure of Smoothness 

As we mentioned earlier the higher the frequency N is,the better the 

discrete system will approximate the required solid surface. An important 

measure of such approximation (smoothness) is the magnitude of the maximum 

distance between the subdivision triangles and solid surface. We refer to this 

measure as 6. It is obvious that for a given cap geometry the value of 6 will 

decrease with increasing frequency. It is also obvious that 6 will decrease 

with increasing n, In order to determine 6i we proceed as follows. 

Generally speaking the equation of a flat plane P passing through the 

three arbitrary points (X1,Y1,Z1), (X2,Y2,Z2) and (X3,Y3,z3) is given by 

X Y Z 1 

x1 y1 z1 1 

x2 y2 z2 1 

x3 y3 z3 
1 

or equivalently by 

AX+BY+CZ+D=O 

where 

A= 

y1 z1 1 

y2 z2 1 

Y3 z3 1 

, 

= 0 

BE- 

x1 zl 1 

x2 z2 1 

x3 z3 1 

(26a) 

(26b) 

(26c ,d) 

(26e,f) 
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Let us suppose that another curved surface S (such as a paraboloid for 

example) passes through these three points. The maximum distance between 

the plane P and the surface S (see figure 22) is the normal distance between 

the plane P and the tangent plane T to S which is parallel to P; this distance 

is shown as N1N2 in figure 22. The direction cosines ratio of N1N2 are 

given by 

A B C 
K'K'K (27a) 

where 

K2 = A2 + B2 + C2 (27b) 

since N1N2 is perpendicular to the planes P and T. Using the above analysis, 

we can determine the maximum deviation for any surface, particularly those of 

the spherical and paraboloidal as follows: 

Spherical Surface: 

The equation of a spherical surface is given by (see equation 7) 

x2 -I- Y2 -I- z2 = R2 (28) 

Accordingly the direction cosinesof any perpendicular to this surface are 

given by: 

1 aF 1 aF 1 aF 
-- --9 -- K1 ax ’ K1 ay K1 az 

where 

(29a) 

(2%) 

and the function F is given by 

F = (X2 + Y2 + Z2 - R2) (30) 

At the particular point N2 (the parallel tangent point), these direction ratios 

must be the same as those of (27); this implies that the coordinates of the 

point N2 = (XB , YB , ZB) are determined from the equations 

36 



CONSTRUCTED 
ANTENNA REFLECTOR 
SEGMENT 

ORIGINAL 
SURFACE 

FIG. 22. DISPLAY OF ACTUAL SOLID SURFACE AND ITS TANGENT 
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2XB 2YB 2ZB FL -=-c-5- 
A B C K (31) 

which can be solved to obtain 

xB = AR/K , YB = 

Now, the maximum 

the sphere is given by 

which is known as 

AXB+BYB+CZB+D 
6 = 

Paraboloidal Surface: 

BR/K , ZB = CR/K (32) 

distance 6 between the plane P and the surface of 

the distance between the point N2 and the plane P 

For the paraboloidal surface the function F is given by 

+f 4 F=(X2+Y2+rZ-7) . 

Using the same analysis used for the sphere one gets 
2 

2XB 2YB 5 K1 -=-=-=- 
A B HC K 

where 

Accordingly, one gets 

xB$,yB=g 
and using (36) in (34) we obtain 

R1' ZB=R--- 
4HC2 

(A2 -I- B2) 

The maximum deviation can again be calculated using the formula (33). 

(33) 

(34) 

(354 

(35b) 

(36) 

(37) 

38 
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IV. COMPUTER CODE CALCTJLATIONS 

A general purpose computer code has been written in order to model discrete 

lattice shells of revolutions as outlined above. This code contains many possible 

combinations of design parameters which we have mentioned in our analysis. The 

code also contains a general and self sufficient graphical subroutine. To see 

how both the computational (modeling) and graphical codes work we have first 

to define their parameters and then proceed to study their flow chart. The 

graphical subroutine is described in Appendix A. 

Input Parameters: 

WD = focus to aperture diameter ratio. 

APED = aperture diameter. 

NS En = number of equal subdivisions of aperture circle. 

1 Sphere 
LT = Shell type: 

2 Paraboloid 

(XP, YP, ZP) = Coordinates of the center of projection. 

1 Single center of projection method 
LN = Design control card: 

2 Normal projection method 

N = frequency of subdivision 

ALL, AA2, AA3 = al, a2, a3 = Euler's angles used for viewing plots. 

EPSL = constant used in the parametric study of chord factors. 

Calculated Parameters: 

ru = API2 = radius of the aperture circle 

H = height of the cap 

w, Y1, Zl) , 02, Y2, 22) , (X3, Y3, 23) are the coordinates of the 

representative triangle face (1,2,3) (see Sketch 1). 
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(X2, Y2, 22) 2 EL2 3 (X3, Y3, 23) 

Triangular Face 
SKETCH I 

ELl, EL2, a properties of the triangular face. 

X'(I,.J), Y'(I,J), Z'(I,J) coordinates of the projected point on the 

surface of the cap. 

Dl(I,J), D2(I,J), D3(I,J) the side lengths of the subtriangles. 

G(I)-m = different chord lengths. 

GG(1) = different normalized chord factors. 

GGMX = length of the longest chord. 

GGMN = length of the minimum chord. 

1K-m = numerical number of the chord factors. 

NFFEm = analytical number of the chord factors. 

LMN = numerical number of the parameterized chord factors for a given EPSL. 

GN(LMN) = parameterized chord factors. 

XMAX:G = maximum deviation. 

6 rel = 6/R. 

DIH = dihedral angle between two adjacent planes, 

The computer code will be distributed through 

COSMIC 
University of Georgia 
Athens, Georgia 30602 
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GIVEN: FOD, AI', NS, LT. LN, N, 
XP, YP, ZP, Al, A2. .a, 
EPSL 

I 
X(1.J) 

. Y(1.J) . 
Z(1.J) 

v 
KEASUREOF 
SMCOTHZNESS 

4 
xx-u 

1 

Dl(I.J), D2(I,J), D3(I,J) 

J 
G(I). GG(I). IR 

GGMX. GGX-4 
e 

PARXXETRIC STLZY 

CPSL 

COMPUTER PROGRAM FLOW CHART 
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V. ILLUSTRATIVE RESULTS 

The utility of our general computer program will be demonstrated by 

generating necessary design parameters of discrete large space antenna re- 

flectors. Specifically we determine the shape and size of flat segmented sur- 

faces which approximate spherical and paraboloidal reflector surfaces. Our 

results will also be displayed in the form of comparisons between the spherical 

and paraboloidal designs. Results will be presented for a wide range of pro- 

portions; focus-to-diameter (F/D) radius from .25 to 1 which go all the way 

from a hemisphere to a very shallow dish. Other important parameters which 

may vary are the number of pyramid faces, n, the frequency of subdivision, N 

and the aperture diameter D. 

We have carried our numerical calculation on an antenna with the common 

fixed properties D = loom, n = 6 and N = 10 and the variable properties FOD 

and the center of projection. In Figure 23, a plot of Lmax and Lmin for both 

spherical and paraboloidal dishes is shown as a function of FOD for two differ- 

ent projection centers namely the center of the sphere (O,O,O) and (O,O, -106R) 

(this second projection center is equivalent to the normal projection method of 
L. 

SectionIII.6)..In Figure 24 various plots of p are shown as functions of FOD 
max 

for the three projection centers (O,O,R-H), (O,O,O) and (O,O, -106R). In Figure 
L . 

25 a variation of F as a function of projection center is depicted for FOD = 1 
max 

for the paraboloidal surface. As may be seen, the best projection center is that 
L . 

which is around (O,O, -R) where p = .985. The corresponding results for 
max 

FOD = 0.25 and for a spherical surface is shown in Figure 26. The variation of 

6 as a function of frequency N is shown in Figure 30 for various FOD values 

for both spherical and paraboloidal surfaces. 

The variation of 6 with FOD is shown in Figure 29 for various projection 
L. 

centers. Finally a variation of F as a function of n (for an FOD = 1 
max 

paraboloidal dish) is shown in Figure 28 for two different projection centers. 
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L. 
As may be easily seen from this figure the p can be obtained for n = 6 

with the projection center being (O,O,O). 'I:rvariation of this msx value 
L. 

of(F) with the frequency is shown in Figure 27. Varying the frequency 
max 

will alter very slightly this value. 

From the above figures one can easily draw the conclusion that the 
L min - increases with increasing FOD until both the spherical and the para- L max 
boloidal dishes are practically indistinquishable. On the other hand for 

L . 
lower FOD it appears that p is much higher for the paraboloid as compared 

max 
with the sphere. (fig. 24). 

Finally, for the plotting illustrations we depict in figures 31 and 32 

plots of a variety of dishes. On each plot we list the necessary parameters 

used. 

VI. CONCLUDING REMARKS 

We developed geometric schemes for the design and analysis of large 

latticed surfaces. These consist of single surface shells of revolution 

in the form of either spherical or paraboloidal dishes. Arbitrary degrees 

of dish shallowness can be treated. A general purpose computer program is 

developed which is capable of generating the complete geometric design 

parameters of the required dish. The computer program also contains a 

graphical subroutine which enables one to graphically display the required 

design. 
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(a) FOD = 0.1 

(b) FOD = 0.25 

(cl FOD = 0.5 

FIG. (31) PLOTS OF PARABOLOIDAL DISHES FOR A VARIETY OF FOD 
(n=6, N=lO, D=100m, CENTER OF PROJECTION (O,O,O), 
(a,,a,,a3.) = (60°, 30°, 30°) 
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(d) FOD = 0.75 

(e) FOD = 1.0 

(f) FOD = 2.0 

FIG. (31) Concluded 
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FIG. 32a. VERTICAL VIEW OF A SPHERICAL DISH (I-d, N=50, 
D=725m, FOD = .793 AND CENTER OF PROJECTION 
(O,O,O) 1 
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FIG. 32b. SAME AS THAT OF FIG. 32a WITH CENTER 
OF PROJECTION (O,O, R-H) 
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FIG. 32~. SAME AS FIG. 32a WITH VIEW GIVEN BY 

(a,, a2# a,) = (45O, 45O, 45O) 



FIG. 32d. SAME AS FIG. 32b WITH VIEW GIVEN BY (a,, aI, a,) = (45', 45O, 45O) 



APPENDIX A 

VIEWING ANGLES DESCRIPTION 

A computer program is written so that we can graphically illustrate 

the cap's discrete surfaces for any three-dimensional orientation. Due to 

the rotational symmetry about the z-axis we draw all of the cap once we know 

how to draw one of the pyramid's face triangles. 

Let (X(l), Y(l), Z(l) ) be the coordinates of a point in the first tri- 

angle face of figure Al. The coordinates of the corresponding points on 

the adjacent faces (counterclockwise) will be (X (2) , YC2), z(2)), 

(X(3)) y(3), Z(3)) --__ (x(n), y(n), z(n)> , , respectively, (see fig. Al). 

Notice also that Z (') = Z(') = Zc3) = . . . Z(n). Let us use polar coordinates; 

the point (X(m)' Y(m), Z(m)) can be written in polar form (while suppressing 

the z-coordinate) as 

,h> + iy(m> = reieeih-1)9 

where m = 1,2,3, . . . n 

(Al) 

Now suppose that we give the ii, Y, ?. coordinate system (see fig. AZ) containing 

the reflector an arbitrary orientation with respect to a fixed set of axes 

x, Y, z. We choose the origin, 0, of the system x, ? and ?! to be the same as 

the origin, o of the system X, Y and Z. By projecting the cap in the (X-Y) 

plane or the (Y-Z) plane, we obtain a view of the cap in a required orientation. 

The question is knowing the values of xi, Yi and zi for a specific point what 

would be the corresponding values of Xi, Yi and Zi. This can be done by referring 

to the Euler angles. First let us fix our system of axes in space X,Y and Z. 

Then we start our orientation process by letting (2, ? and 2) which are fixed 
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X J 

FIG. Al. LOCATIONS OF POINTS ON THE SOLID SURFACE 
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FIG. A2. COORDINATE TRANSFORMATION 
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in the body of the cap coincide with the fixed system X, Y and 2. At this 

stage, we start to rotate the body around the 2 axes with an angle a 1, (see 

fig. A3). To make it easier to illustrate let us use the notation n 
i 

which 

represents unit vectors along the direction of the fixed axes in the body 

-0) before rotation and let n i represent unit vectors along the direction of 

the axes after this first rotation. The relations between these unit vectors 

are given by n 1 
11 n2 = 

n3 

cosa 1 -sina 1 0 

sine 1 cosa 1 0 

0 0 1 

-0) 
5 

-Cl) 
n2 

-Cl) 
n3 1 

(-43) 

- (13 Now, let us rotate the body about the new position of !?, i.e. around nl , with 

an angle o, -(2) to obtain a new set of axes n, related to the preceding by 
L 

-0) 
5 

#I 

-0) = 
n2 

-0) 
n3 

I 

1 0 0 

0 cosa 2 -sine 2 

0 sina 2 cosa 2 
- 

-(2) 
3 

-@I 
n2 

-(2) 
n3 

(A41 

To end our.process of orientation, let us rotate the body about the new 

-(2) position of ?, i.e. around n3 , with an angle a3 to obtain the final set 

of axes Gi3). One notices that this is the set of axes X*, ?* and ?* which 

is fixed in the cap and one also notices that the coordinates of any point 

on the cap's surface with respect to that set of axes are known and related 

to the preceding by 
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FIG. A3. EULER'S ANGLES 
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cosa 3 -sina 3 0 

sina 3 cosa 3 0 

G2) 
-(2) = 
n2 

-1 

-(2) 
"3 0 0 1 

So, accordingly we finally obtain the relation 

'i 

1: 'i 

'i 

= 

cosa 1 -sina 1 0 

sina 1 cosa 1 0 

0 0 1 

_ - 

-(3) 
5 

-(3) 
n2 

-(3) 
n3 

w - 

1 0 0 

0 cosa 2 -sina 2 

0 sine 2 cosa 2 

or equivalently is 

Xi = (cosalcosa3 - sinal cosa2sina3)Xi 

+ (-cosalsino - 3 sinalcosa2cosa >Y 3i 

+ (sinalsina2)Zi 

Yi = (sina cosa 13 + cosalcosa2sina3)Xi 

+ (-sinalsina 3 + cosalcosa2cosa >ii 3i 

+ (-cosalsina2)Zi 

C 

: ! S 

.osa 3 

,ina 3 

0 

-sina 3 

cosa 3 

0 

W) 

0 iii 0 Yi II. 1 zi 
. 

(A61 

(A7) 

(A81 

zi = (sina2sina3)Xi + (sina2cosa3)jii + cosa2Zi . (A91 

So, for different values for the angles al, a2 and a3, one can obtain different 

view from different angles to the cap. Some results of our plottings are 

illustrated in figures 31 and 32, for both spherical and paraboloidal caps. 
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